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Abstract. Discussed in this paper are 3, 
extremely helpful, techniques in the analyses of 
imager and camera performance. The first topic is 
an extension to the well known photon shot noise 
curve. It is a straight forward method to determine 
any arbitrary transfer function f(N) from pixel-to-
camera output. Next, the design of a µ-lens 
simulation is usually executed as a function of 
Chief Ray Angle (CRA). But practically measured 
with a lens and a given f-number range. The 
method offered converts the f-numbers into a set of 
CRA numbers with which the µ-lens efficiency 
η(CRA) can be determined as a function of CRA. 
The third topic entails the application of a 2-
dimensional histogram to investigate dependence of 
all pixels in an imager on one parameter. Like 
temperature, supply voltage or time. 
 
1.0  An extension to the photon shot 
noise transfer curve 
The noise at the output of a camera consists of two 
basic parts. One is the system noise often referred 
to as the read noise and the other is the shot noise. 
The shot noise is governed by the laws of physics 
and as such predictable. The system noise can be 
rather complex depending on whether anomalies in 
the system occur. Examples of anomalies are: 
LVDS transmission failures, missing bits in the 
ADC, periodic ADC noise due to ground bounce. 
The method and its practical implementation 
discussed in this paper is applicable in the situation 
with and without anomalies.  
In the linear approach for the shot noise transfer 
curve the output signal reads 

(1.1)  NKVout ∗= ,  

with K the gain from pixel to output and N the 
number of electrons generated in the pixel. The 
noise is written as the quadratic sum of the shot 
noise and the read noise, 

(1.2)  
2

dn NNKU +∗= . 

For large charge packets (N) the ratio between the 
noise cubed and the output signal approaches K. 
Measuring the noise Un as a function of the output 
signal Vout allows to calculate the unknown gain K. 
Knowing K one can convert the output signals in 
the number of electrons without a priory knowledge 

of the µV/e and the gain [1,2] of the camera chain. 
For instance one can determine the read noise in 
electrons, the maximum charge handling capacity 
and other pixel related parameters like FPN and 
sensitivity all in electrons.  
Graphing the noise on the Y-axis and the output 
signal on the X-axis on a log-log scale shows two 
asymptotic lines. One for small N values with the 
noise approaching the read noise Nd and for large N 

values approaching N which on a log log scale 
shows as a straight-line with coefficient ½. 
 
In the general case the output signal Vout is written 
as: 

(1.3)  )(NfVout =  

and the corresponding noise, or variance, Un 

(1.4)  
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With f() the transfer function from pixel-(electrons) 
to-camera-output, N the number of electrons 
generated in the pixel and Nd the read noise. Under 
the reasonable assumption of monoticity for f() the 
absolute-signs can be dropped. 
Taking the derivative from equation (1.3) the 
output signal with respect to the number of 
electrons N, substituting the result in the noise 
equation (1.4), applying separation of variables and 
finally integrating left and right sides, the result 
reads 
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The left side can be written in closed form and the 
right side can be measured, 
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Hence the arbitrary transfer function f(), from 
pixel-to-output, can be determined and the output 
signal Vout as a function of the number of electrons 
(N) generated is known and can be graphed, 
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Nowadays width the advent of digitized images the 
method is fairly simple to implement and use is 
made of the fact that output levels are represented 
as digital words with a given bit depth. Hence can 
be used as in index of a one dimensional array too.  
 
The implementation requires 3 grabbed images, 
Figure 1.1, as follows: 
-take shortly after each other two snapshots, 
ImageG1 and ImageG2, of a scene containing all 
the gray levels from black to white, eg a defocused 
grey chart. The difference between these two 
images on a pixel-by-pixel basis is only shot noise 

and read noise times 2 . 
-take a snapshot of the black, ImageB, eg with 
capped lens. The difference between ImageG1 and 
ImageB is the output level on a pixel-by-pixel 
basis. The graph of the noise versus output level, is 
then calculated following: 
For i,j = 1,1 to Nrows, Ncolumns do 

Vout= ImageG1[i,j]-ImageB[i,j]); 
Histo(Vout)= Histo(Vout)+1; 
Variance(Vout) = Variance(Vout) +  

+{(imageG2[i,j]-imageG1[i,j])2/2-Variance(Vout) 
}/Histo(Vout); 
End 
NOTE: The  Variance is written as a moving 
average  recursive form! 
For all output levels, Vout, now calculate  

(1.8)  )()( outoutn VVarianceVU =  

and so the right-hand side of equation (1.6) is 
known and the pixel-to-output transfer function can 
be graphed 
Figure 1.2 shows the noise as a function of output 
level for a camera with gamma switched on (power 
law) and off (linear).  
The discretized form of equation (1.7) reads: 
(1.9)  
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Application of eq. (1.9) to the data depicted in 
Figure 1.2 results in the second graph, Figure 1.3, 
where the transfer-function of the pixel-to-camera 
output is calculated. Clearly the linear and the 
gamma transfer characteristic are visible. 
 
 
2.0  Conversion from f-number to 
chief ray angle 
A nice theoretical approach to the optical efficiency 
is given in [3]. In this chapter a more practical 
approach is described.  

Given a camera, an imager and a lens with aperture 
f. Than a cone of light with Chief Ray Angles 
ranging from 0 to CRAx is projected on the pixels , 
Figure 2.1, with the following relation between 
maximum CRAx and f-number 
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In general the output level Vout is proportional with 
the inverse of the f-number squared, F-2 
After applying geometry one arrives at the 
following relation between output level and CRAx 

(2.2)  θ
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Where the µ-lens efficiency, as a function of CRA, 
is defined as )(CRAη .  

In the case of a perfect µ-lens, 1)( =CRAη  and 

after performing the integration of equation (2.2) 
the output level is proportional with tan(CRAx)

2 or 
after substitution of equation (2.1) with the inverse 
of the f-number squared as one would expect.  
 
Table 1, shows the CRA values for several f-
numbers 

 
Table 1: CRA expressed in degree 
 
Using the mean-value theorem of integration, 

defining CRA as an element of the interval 
[CRA1,CRA2] eq. (2.2) is than evaluated as  
(2.3)  
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Therefore given two f-numbers for which the 
output level Vout is measured, the related CRA can 
be calculated and an estimation of the µ-lens 

F CRA
1.2 22.62
1.4 19.65
2 14.04

2.8 10.12
4 7.13

5.6 5.10
8 3.58
11 2.60
16 1.79
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efficiency on the interval [CRA1,CRA2] is 
determined through equation (2.3) 
 
A more refined approach is by defining the µ-lens 
efficiency as 

(2.4)  2
31

1
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CRA ∗+

∗+
=η . 

Substituting into eq. 2.2 and applying a least-mean-
square-fit to the measured Vout, as a function of 
CRAx, the parameters a and b are determined. 
Hence the µ-lens efficiency is known as a function 
of CRA by substituting back into equation (2.4). 
This theory now is applied to experimental results 
[4] which are graphed for a straight forward µ-lens 
and a double µ-lens. The µ-lens efficiency as a 
function of CRA is depicted in figure 2.2. The 
effect of the embedded lens now clearly shows for 
CRA larger than 12 degree.  
The error between the measured and the estimated 
Vout is within 1% for the new µ-lens and 2% for the 
old µ-lens.  
 
 
3.0 On the use of a 2-dimensional- 
histogram. 
The application of a 2-dimensional histogram is in 
determining activation energies of large population 
of pixels. Or the dependence on a parameter like 
pixel supply voltage or change in pixels as a 
function of time. Its purpose is that after application 
of the method one can see at a glance if a large 
amount of pixels on an individual basis behave the 
same or if the relation to the parameter under 
investigation is uncorrelated.  
 
The 2-dimensional histogram is an image where X 
and Y-axis are amplitude values and the Z value is 
the histogram (amplitude) part. 
Use is made of the fact that the pixel amplitude in a 
digitized image can be used as an index of an array. 
The 2-dimensional histogram is generated through 
amplitude transformation into X or Y position. And 
intensity as the number of pixels having that joint 
X,Y amplitude. One needs 2 grabbed images, and 
only parameter changed in value. Example: Image1 
and Image2 are 1920x1080x10bit images and 
temperature was 70C for the first and 60C for the 
second. 
A normal histogram can be generated through 
For i:=1 to Nrows 
For j:=1 to Ncolumns 
HISTO2D[ IMAGE1[i,j] ; IMAGE2[i,j] ]:= 
HISTO2D[ IMAGE1[i,j] ; IMAGE2[i,j]]+1 

This normal histogram shows more or less where 
and how the point of gravity of all the pixels values 
changes and are located. 
A specialized 2-dimensional histogram is the 
binarized one [5]: 
For i:=1 to Nrows 
For j:=1 to Ncolumns 
HISTO2DBIN[ IMAGE1i,j] ; IMAGE2[i,j]]:=1 
 
If there is a combination of amplitudes that only 
one pixel exhibits it will show up clearly in the 
binarized 2-dimensional histogram. As such a very 
powerful tool to investigate FPN and its excursions, 
the leaking pixels  
 
Figure 3.1 shows an example of such binarized 
histogram. It shows that almost all the pixels in the 
imager have about the same activation energy. With 
the exception of a few others that go astray. 
 
Figure 3.2 shows an example of a normal 2-
dimensional histogram where the parameter 
changed is the pixel supply voltage. There 3 regions 
to be discriminated:  
1: is where pixels have the same amplitude under 
both pixel supply voltages, (on the dotted line); 
2: where the bulk of the pixels change with the 
same growth factor as a function of change in pixel 
supply voltage; (on a angle different from the 
dotted line) 
3: where pixels vanish at low voltage and  
4: where pixels vanish at high voltage. 
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Figure 1.1: Example of a set of 3 images to determine the Shot Noise Transfer Curve 

Figure 1.2: Noise (Variance) as a function of 
output level 
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Figure 2.1: F-number and cone angle which is 
the maximum CRA. All light rays have angles in 
an interval of [0,CRA]. 
 

Figure 3.1: Two dimensional binerized 
histogram for images taken at 70C (X-axis) and 
50C (Y-axis). Dotted line for “X=Y” 
 

Figure 1.3: Camera Transfer Curve calculated 
from the shotnoise curves in Figure 1.2. 
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Figure 2.3: Estimated µ-lens efficiency as a 
function of Chief Ray Angle. Solid squares 
depict the old µ-lens and solid triangles the new 
double µ -lens. 
 

 
Figure 3.2 A 2-dimensional histogram for an 
imager with changed pixel voltage. Yellow a 
linear and green a logarithmic representation. 
Dotted line for “X=Y”. 
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