

NEXT GENERATION CMOS IMAGER FOR BROADCAST CAMERAS

Peter Centen
Grass Valley Image Capture Solutions
R&D

Acknowledgement

- Grass Valley R&D Image Capture Solutions, Netherlands
 - J.Rotte, N.J. Damstra, F.van der Weegen
- Thomson Imager Design Center, Germany
 - S.Lehr, S.Roth, F.Heizmann, V.Neiss, M.Schreiber, N.Mallory, S. de la Torre, B.Braicu, K.Schaaf, H.Schemmann, R.Schweer, R.Dohmen, W.Yan

Agenda

- CMOS Imagers
 - Self fulfilling prophesy
 - Feature size
- Xensium A CMOS imager for Broadcast Cameras
- Food for Thought
 - Noise, Shotnoise and SNR in 1080p50 and beyond

A Self fulfilling Prophesy

Perception

 CMOS imagers are cheap and have low quality

The sentence could also read

- CMOS imagers are expensive and have high quality
- When you don't apply all the skills and technology available then CMOS is kept cheap and at low quality
 - it is a mass market problem

- Parameters that matter
 - Temporal **Noise** or readnoise
 - Sensitivity (QE and Fillfactor)
 - Together with readnoise it defines SNR
 - Overexposure margin (Qmax, Vsat)
 - Together with the readnoise it defines dynamic range
 - Darkcurrent or leakage current per pixel
 - Fixed Pattern Noise in dark or offset differences per pixel
 - Fixed Pattern Noise in exposed images or gain differences per pixel

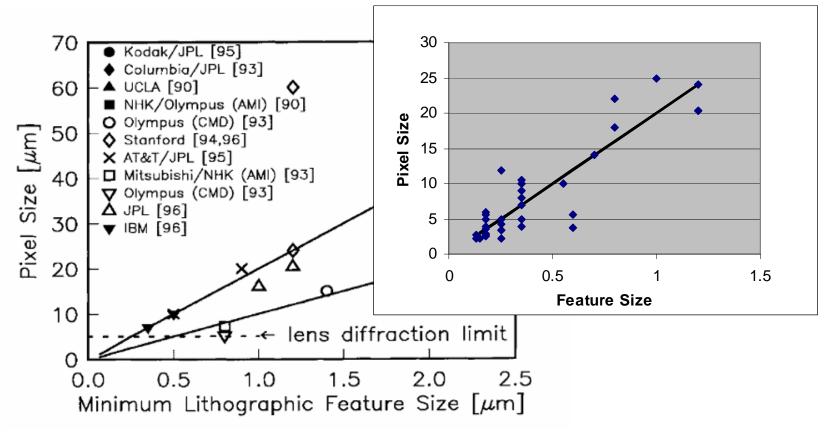
A Self fulfilling Prophesy

- CCDs have a long history in which many of the performance related parameters are improved
 - Sensitivity (quantum efficiency)
 - ul ens
 - Back Side Illumination (BSI)
 - Noise
 - real Correlated Double Sampling (CDS)
 - **Shotnoise** (relates to sensitivity)
 - Darkcurrent, FPN and LAG
 - P+toplayer
 - THESE solutions can be applied too in CMOS imagers at the expense of additional masks and technology steps and hence is more expensive

Feature Size

MOS 1967 Wecker&Noble

CCD 1970 Boyle&Smith


- Why did it take so long for CMOS imagers to enter the market, even though they where conceived before the CCD imagers?
 - The word is Lithographic Feature Size
 - In general a CCD-pixel is MUCH simpler than a CMOS-pixel, the latter contains more active elements

Feature Size

Pixel size: Feature-Size*20

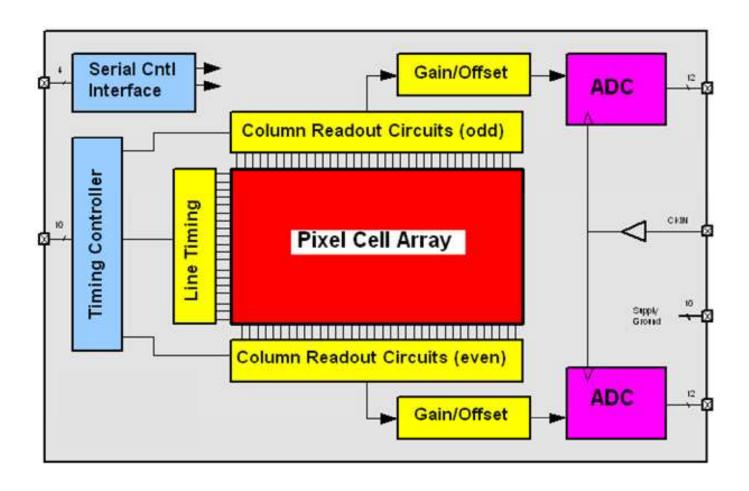
IEEE ED Vol 43, DEC 1996, Hon-Sum Wong

Feature Size

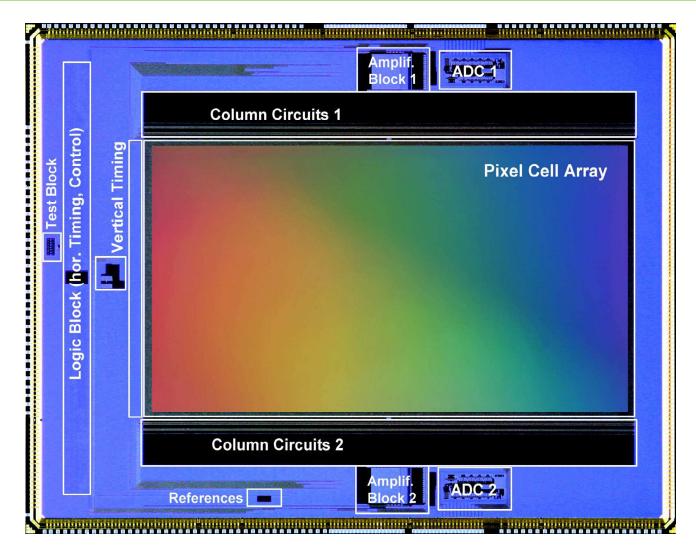
- The average pixel size in HDTV
 - 1080P: 5.0um; 3.6um; 2.7um
 - 2/3-inch; ½-inch; 1/3-inch
- Using the safe rule of thumb between Feature Size and Minimum Pixel dimension of a factor 20 (Wong)
- One needs a litho of <0.25um for 2/3" HDTV Imagers
 - 0.18um and 0.13um are at present mainstream CMOS imaging

CMOS imagers are feasible in Broadcast Cameras

The design of Xensium A CMOS imager for Broadcast applications


Xensium

- An imager is an ANALOG device
 - Keep the imager as simple as possible and make external use of of-the-shelf components like FPGA, memory, processing blocks
 - Allow for a simple state machine and ADC's onchip
- Flexibility in readout and in frame rate
- Build on the many years of video processing experience and choose a camera and imager architecture, that eases CMOS image sensor design
- Design a pixel in a 0.18µm process
 - do real CDS off-chip
 - use hard reset and no soft reset because of inherent lag problems


Xensium

Xensium

Broadcast Camera's

2000 lux, f/10, 89.9 %, 3200 K and 54 dB in Y @ 1080i50

WHAT DOES THAT MEAN IN 1080p50?

Signal-to-Noise

- SNR=54dB in Y at 1080i50
 - Linear camera setting and 0dB mastergain
 - Camera signal chain as clean as possible
 - Contour off, Gamma off.
 - The SNR is defined with two numbers
 - The amount of light needed for 700mV video
 - The **f-number** for which we get 700mV video given the 2000 lux, 89.9%, 3200K
 - The noise without illumination
 - It is NOT the noise that belongs to the signal level
- 54dB@1080i50 or 51dB in 1080p50
 - 1080i50 is the addition of two 1080p50 pixels

Broadcast Camera's

- At 2000lux; f/10; 3200K and 89.9% scene reflection
- 2/3" full HDTV imager with pixel of **5x5um**² and **50frames/sec.**
- #Photons per pixel to reach 700mV video at 0dB mastergain

R 5400 photons/pixel
G 4800 photons/pixel
B 1500 photons/pixel

- Assume overall QE = 60% then
 - Charge packet in Green n=2800 e and
 - for SNR in Y=51 dB noise level must be $N_{ro}=10$ e
- BUT PHYSICAL LIMIT
 - number of electrons <= number of photons
 - or 4800e in green, 1500e in blue and 5400e in red
- BTW: To reach same numbers in 1/3" f/5 is equ. f/10 in 2/3"

Shotnoise

n: number of photon generated electrons

Output signal:

$$V_{out} = gain * n$$

Noise:

$$U_n = gain * \sqrt{N_{ro}}^2 + n$$

 1080p50 and 2/3" imagers and camera at 0dB mastergain and f/10

QE	60%	(100%)
– R signal	3200e	(5400e)
– G signal	2800e	(4800e)
– B signal	920e	(1500e)

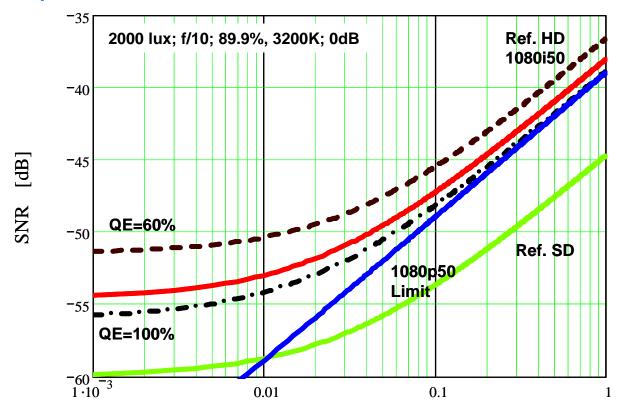
- SNR in Y at 0dB (G = >Y = > +2dB)
 - Broadcast
 - $20*\log(2800/\sqrt{(10^2 + 0)}) + 2dB = 51dB$ (55dB)
 - Signal-to-noise at 700mV
 - $20*\log(2800/\sqrt{(10^2 + 2800)}) + 2dB = 36dB$ (38dB)
 - Noise increases due to SHOTNOISE

Shotnoise curve

 The noise in dB referenced to nominal output level

- No Weeber-Fechner but two pragmatic reference curves
 - The SDTV 60dB, 625i50
 - Perceived as excellent
 - The HDTV 54dB, 1080i50
 - Perceived as just acceptable

Shotnoise curve

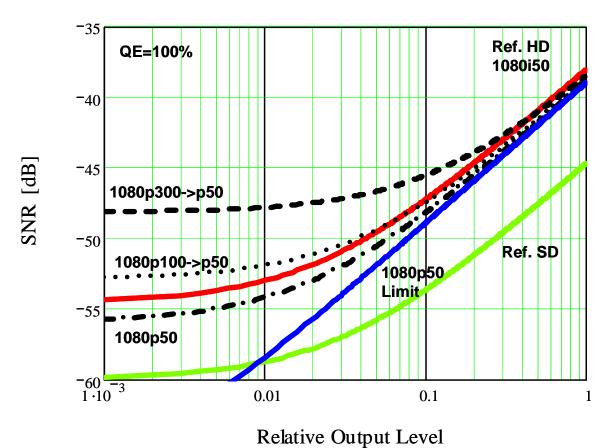

-1080p50

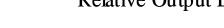
Ref: f/11; 625i50; SDTV

QE=60%, 100%

Ref: f/11; 1080i50; HDTV

-1080p50 no noise in black and QE=100%





Relative Output Level

Shotnoise curve

Conclusion

- CMOS imagers for full HDTV are becoming viable.
 - With the reporting of Xensium the first full HDTV imager is presented that offers broadcast quality images.
 - The architectural choices of Xensium enabled the development of a camera that reaches broadcast and Pro/AV quality.
- Due to the shotnoise the limits of physics are reached for 2/3" Imagers used in 1080p50 at f/10. The images are on the edge of being noisy.
 - If one wants to achieve the same noise impression as SD one either has to apply noise reducers or accept that f-numbers in the range of f/5.6 are needed as a 0dB setting for the camera.
- Generating 1080p50 from a 1080p300 source will have the same noise impression for the exposed parts, as if it was captured in native 1080p50.
 - The dark areas in the images will be too noisy until the readout noise (noise in black) is reduced substantially.

References

- L. Kozlowksi, Performance Limits in Visible and Infrared Image Sensors, IEDM DEC 1999, pp 36.1.1-36.1.4.
- H. Wong, Technology and Device scaling considerations for CMOS imagers, IEEE ED Vol. 43, pp. 2131-2142, DEC 1996.
- M. Loose et al. 2/3-inch CMOS Imaging Sensor for High Definition television, IEEE workshop on charge-coupled devices and advanced image sensors, June 7-9, 2001.
- M. Schubin, Optics of Small-Format HDTV Acquisition, SMPTE 147th Technical Conference and Exhibition, Nov. 9-12, 2005
- A. Theuwissen, Solid-State Imaging with Charge-Coupled Devices, 1995, Kluwer Academic Publishers, ISBN 0-7923-3456-6.
- P.Centen et. al., Aspect Ratio switching with equal horizontal pixel count, Technical Papers International Broadcast Convention, pp. 1-7, Amsterdam, September 1994.
- P. Centen, T. Moelands, J.v. Rooy, M. Stekelenburg, A Multi-Format HDTV Camera Head, proceedings of the 142st SMPTE Technical Conference and Exhibition, Pasadena, October 18-21, 2000.
- Invited, P. Centen, 2/3"- Cameras Challenging the Latitude of FILM, NAB Conference and Exhibition, Digital Cinema Summit 12-13 April 2008, Las Vegas.

References

- Y. Ishihara, K. Tanigaki, A High Photosensitive IL-CCD Image Sensor with Monolitic Resin Lens Array, Technical Digest IEDM, pp 497-500, Dec 6-8, 1963.
- M. Blouke, J. Breitzmann, J. Hall; Three-phase, backside illuminated 500×500 CCD imager, Solid-State Circuits Conference. Digest of Technical Papers. Feb-1978, Volume: XXI, page(s): 36-37.
- J. Gambino et. al, CMOS Imager with Copper Wiring and Lightpipe, Electron Devices Meeting, 2006. IEDM apos;06. International, Volume, Issue, 11-13 Dec. 2006 Page(s):1 – 4,.
- M. White et al, "Characterisation of Surface Channel CCD Image Arrays at Low Light Levels", IEEE JSSC, Vol. SC-9, No. 1, pp 1-13, 1974.
- Y. Nishida et.al, Design concept for a low-noise CCD image sensor based on subjective evaluation; Electron Devices, IEEE Transactions on, Volume 36, Issue 2, Feb 1989 Page(s):360 – 366
- J. Janesick, K. Klaassen, T. Elliott, Charge-coupled-device charge-collection efficiency and the photon transfer technique, Optical engineering, October 1987, Vol. 26, No.10, pp 972-980.
- P. Centen, Applied Mathematics to Simplify Imager and Camera Analyses Proceedings of the IEEE International Image Sensor Workshop, 7-10 June 2007, pp 121-124.
- P. Centen et. al, A 2/3-inch CMOS Image Sensor for HDTV Applications with Multiple High-DR Modes and Flexible Scanning, ISSCC2007, San Francisco, 11-14 February 2007, pp 512-513.

