A 2/3 inch CMOS Image Sensor for HDTV Applications with Multiple High-DR Modes and Flexible Scanning

<u>P. Centen¹</u>, S. Lehr², S. Roth², J. Rotte¹, P. Vogel², V. Neiss², H. Schemmann², M. Schreiber², B-K. Teng², K. Damstra¹

¹ Grass Valley, Breda, The Netherlands ² Thomson Silicon Components, Villingen, Germany

Agenda

- Design approach
- Chip Block diagram and Architecture
- Flexible scanning
- High-DR modes
- Results
- Conclusion

Design Approach

- Broadcast is a low volume high performance market
 - In Q1 2005 nobody in the CMOS field was interested in a dedicated development or had a design available!
- Special challenges for a CMOS-imager in broadcast applications

1920(H)x1080(V):5µmx5µm pixels and 11mm image diagonal

Multimode :Interlaced (eg. 1080i60), progressive (eg. 1080p30)

QE and Noise :2000 lux, 3200 K, 90%, f/8-f/11, SNR=54 dB in Y

Dark current :FPN, shot noise

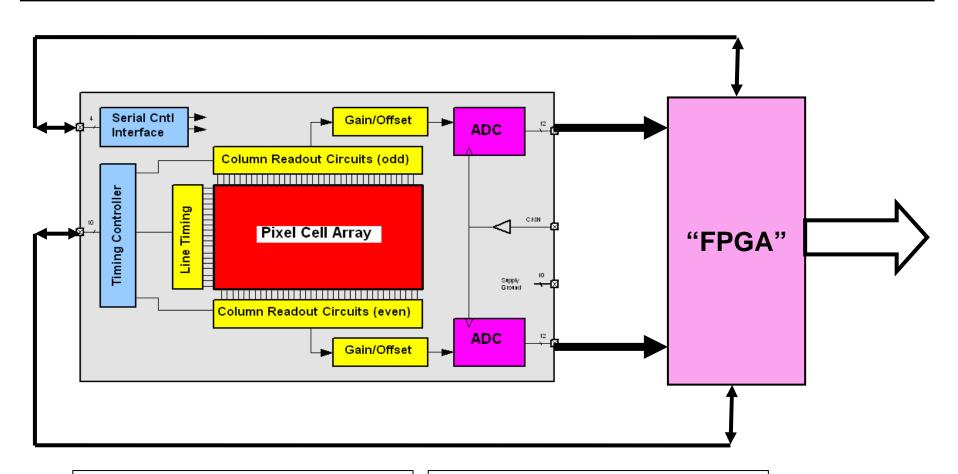
– Qmax :over exposure margin >400%

– Lag :None

- 'Blooming' :must handle 16-fstop overexposure

– Pixel-to-pixel :PRNU<1%</p>

– column-to-column:<0.06%</p>


- 3-imagers synchronized for use in R,G and B simultaneously
- And many other imaging related topics both optical and electrical

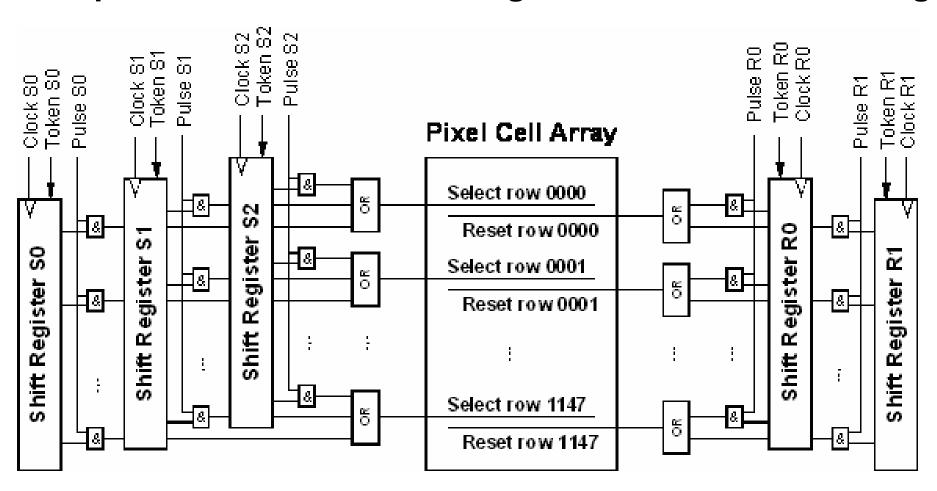
Design Approach

An imager is an ANALOG device

- Keep the imager as simple as possible and make use of of-the-shelf components like FPGA, memory, processing blocks
- Allow for a simple state machine and ADC's on-chip
- Flexibility in readout and in frame rate
- Chose a camera architecture: video processing and imager, that eases CMOS image sensor design
- Use a 3T-pixel in 0.18µm process
 - do real CDS off-chip
 - use hard reset, no soft reset because of inherent lag problems
 - ➤ the same performance as a 4T-pixel
 - many other advantages

Chip Block Diagram

Black Reference Pixels

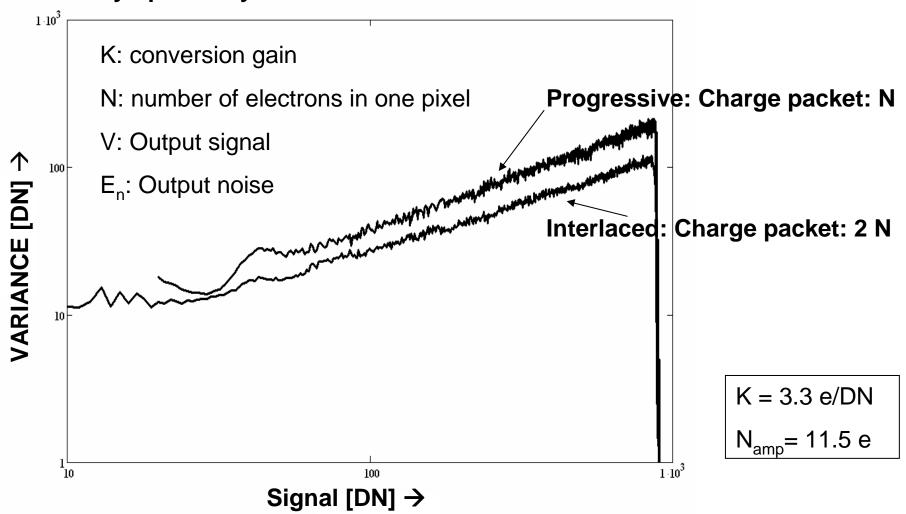

- -80 black reference columns
- -40 black reference rows

Active Pixels

- -1978 active columns (1920)
- -1108 active rows (1080)

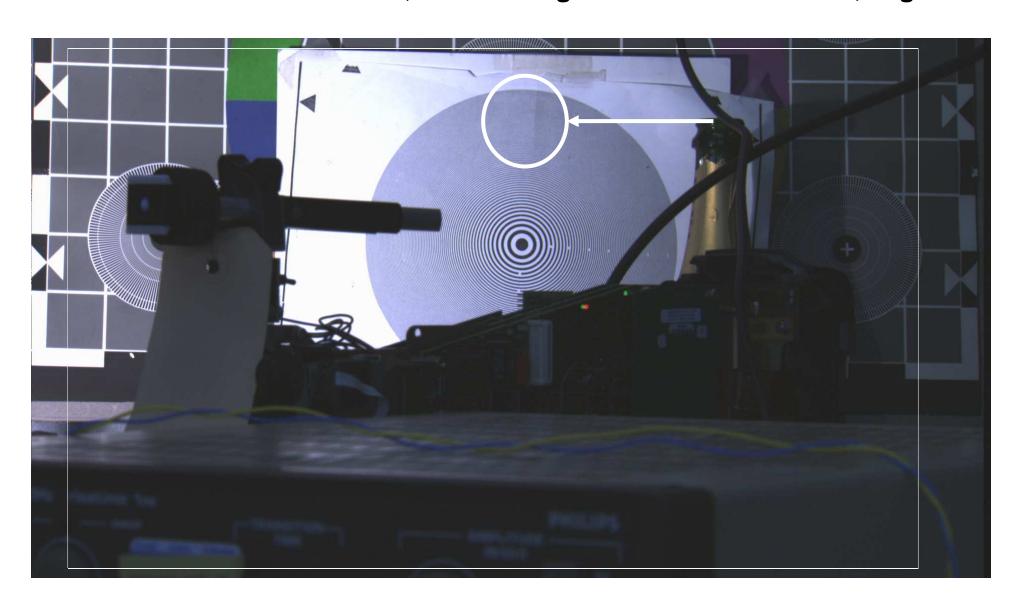
Shift Registers

Multiple select and reset shift registers for flexible scanning


Flexible Scanning

- Load the shift register with a proper "000XX00" pattern and define the ROI
- At 2/3 inch image diagonal
 - $-1920(H) \times 1080p(V)$
 - 1920(H) x 1080i(V) with Frame or Field mode
 - 1920(H) x 540p(V) with 1080p or 540p aperture
- At different image diagonals (ROI)
 - $-1280(H) \times 1440i(V)$
 - 1280(H) x 720p(V)
 - 1724(H) x 485p(V)
 - 1724(H) x 485i(V)
- Raw frame rates for the 3 main modes
 - 1080p90 or 1080i180 or 720p180 (=>1080p120)
 - Maximum clock frequency ADCs: 2x112 MHz (=> 2x148 MHz)

Evaluation: Shot Noise Transfer Curve


Signal: V = K N Noise: $VARIANCE = E_n^2 = K^2 (N + N_{amp}^2)$

Asymptotically: $En^2 = K V => K can be determined$

Evaluation: Zonechart

• The ALIASING in 1080i60, after adding two consecutive lines, is gone

High-DR modes

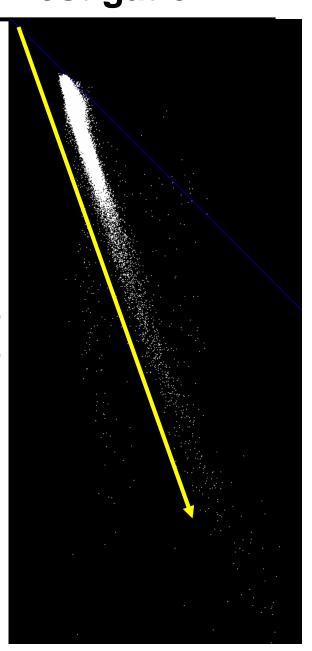
- Implemented and under investigation
- Time sub sampling, 3 samples of the pixel voltage
 - First sample at black
 - Second sample at eg ¼ of the nominal integration time
 - Third sample at the end nominal integration time
- Vertical sub sampling
 - Even rows have pixels with a nominal integration time
 - Odd rows have pixels with eg ¼ of the nominal integration time
- Horizontal sub sampling
 - Even columns have pixels with a nominal integration time
 - Odd columns have pixels with eg ¼ of the nominal integration interval
- Adjustable Linear-Logarithmic pixel

Evaluation: High-DR Image

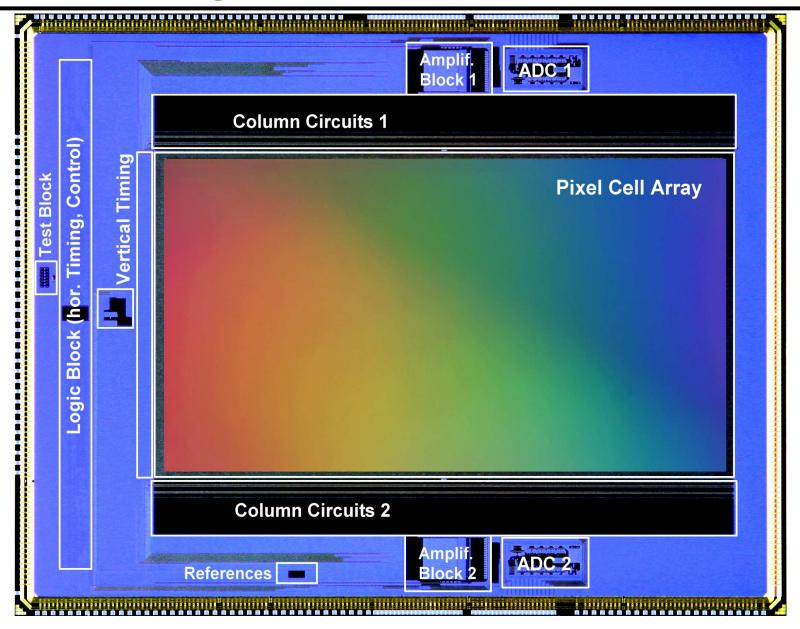
New Technique for Dark Current Investigation

2-Dimensional Binarized Histogram

- -2-images at different temperature Eg 50C and 70C;
- -A **pixel-by-pixel** comparison in both images for m,n do HISTO[IMAGE1[m,n] , IMAGE2[m,n]]:=1


Y-axis: 70C=>

X-axis: 50C=>


Info on activation energy for ALL pixels!

<=Y-axis: 70C

<=X-axis: 31C

Chip Micrograph

Table of characteristics

Pixel size, transistor count	5μm x 5μm; 3T
Number of pixels including opt. black	2048(H) x 1148(V)
Pixel fill factor (without micro-lens)	56%
Analog to digital conversion	2 ADCs of 12bit
Scanning rate demonstrated (2x148MHz)	1080i240 or 1080p120
Conversion gain FD	80μV/e ⁻
Idark @ 60°C	0.4nA/cm ²
Temporal noise, pixel only, 27°C	4e⁻
Temporal noise, all contributors, 27°C	11.5e⁻
Sensitivity in green (color splitter)	32ke ⁻ /lux-sec
Maximum reachable dynamic range	116dB in interlaced mode 122dB in progressive mode
Linear saturation level	>15ke ⁻
Power dissipation	550mW@1080i120

Conclusion

- A 2/3 inch CMOS image sensor with 3T-pixel, in 0.18µm 1P4M process, is presented that fulfills full HDTV broadcast quality
- Among the many scanning formats are 1080p, 1080i and 720p with matched anti-aliasing properties
- The imager has multiple ways for generating High-DR images
- Compared with a CCD application with the additional pulse pattern generator + CDS + gain stages + ADC the power consumption went down with a factor of 3
- A noise level of 4e⁻ for the pixel and 11.5e⁻ overall was obtained with off-chip CDS
- At 2000 lux, 90%, 3200K and 54dB in Y
 - In 1080i60 the f-number is f/8 and f/11 in 1080p30
- The maximum raw capture rate is 1080i180, 1080p90 and 720p180
 - 1080i240 or 1080p120 has been demonstrated

