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Abstract—A variational principle for a cold plasma, formulated by TayLor (1974), minimizes the magnetic
energy of a cylindrical plasma confined by an infinitely conducting metal wall, subject to the constraints
of constant longitudinal flux and magnetic helicity. The paper extends this minimum energy principle to
the case of a vacuum layer separating the plasma from the wall. The ensuing shift of the F-3-curve is
in qualitative agreement with the experiments.

1. INTRODUCTION
A VARIATIONAL principle by TAYLOR (1974) minimizes the magnetic energy of a
cylindrical plasma column enclosed by an infinitely conducting metal wall, subject
to the constraints of constant longitudinal flux and magnetic helicity K = [A-B dt
(Lagrange multiplier — 4/2). The minimizing magnetic field is a solution of the Euler
equation

V x B =B, (1

and its Bessel solution correctly demonstrates the reversal of the longitudinal field
component, observed in reversed field pinches.

Minor shortcomings of this theory are its limitation to low-f (cold) plasmas and
its inability to describe plasma equilibria with a current density that falls off rapidly
towards the metal wall. To the latter problem, a number of solutions have already
been proposed (ORTOLANI et al., 1984; HASEGAWA et al., 1984; SCHOENBERG et al.,
1984). In some of these solutions, the role of a vacuum layer between the plasma
and the metal wall is acknowledged without, however, incorporating the vacuum layer
into the variational principle. In the underlying paper, the total magnetic energy
(plasma + vacuum) is minimized subject to the plasma magnetic helicity and other
constraints, necessary to let the occurring boundary terms in the principle vanish.

2. THE VARIATIONAL PRINCIPLE

(a) Problem formulation

We consider a toroidal plasma column surrounded by a vacuum layer and an
infinitely conducting metal wall with circular cross-section. The plasma boundary is
allowed to move during the relaxation. In the variational principle, both the vector
potential and the position of the plasma edge are varied and acquire stationary values
at minimum total energy of the configuration. The constraints needed in this model
are the conservation of the toroidal fluxes in the plasma and in the vacuum region,
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FiG. 1.—Geometry of the model.

the magnetic helicity of the plasma and the poloidal vacuum flux. The latter constraint
arises from the assumption of infinite conductivity of the plasma-vacuum interface.
The constraint can be omitted if a surface current at the plasma boundary is excluded.

The mathematical formulation becomes as follows. We minimize the total magnetic
energy

B2 B?
Wg = —idV+j ~dV, (2)
2}10 2#0

¥ V.

n

with respect to variations in V,, A, and A,. V, and V, are the volumes of the plasma
and the vacuum region respectively (see Fig. 1), and A, and A, are the magnetic vector
potentials of the plasma and vacuum regions respectively. The conserved quantities
are:

magnetic helicity of the plasma poK = J A, BpdV, (3)

toroidal plasma flux Yo = J B,-dS, (4)
Spp

toroidal vacuum flux a = S_f B.-dS, (5)

poloidal vacuum flux Vop = Sj' = B,-dS. (6)

vt

The toroidal geometry calls for an additional constraint, the flux through the hole
of the torus,

Yn= [ BydS= [ A, dC. (7)
Sy Cru

Furthermore, there are a number of boundary conditions. First, we have the
continuity of the vector potential and of the magnetic pressure across the plasma
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boundary ry:

Ay(ry) = Ay(ry), (8)
|

T
2, Bi ) =5 - Bim) )

]
Secondly, since the plasma boundary and the metal surface are flux surfaces, we have

n(ry) Bp(ry) = 0, (10)
Dl Tr)* Bulrm) = 0. (11)

(b) The first variation of Wy

The first variation dWp can be written as Wp, — Wge, where Wy, is the magnetic
energy in the sought minimum state and Wpg, is the energy in the perturbed state,
a small change of plasma volume included. Giving all minimum quantities the index
0 and the perturbed quantities the index 1, we have (see Fig. 2):

B2 B2 B2 B2
SWg = j—‘”dV— j—PDdVJr j Sy — f—“’dV. (12)
2#0 2#0 2#0 2}10

Vp1 Vpo LT Vo

Defining likewise in volume Vo

B, _Bp By

o '
210 2u0  2po

(13a)

and in volume V.o

()E'E — BEI. _ B_'zﬂ
2u0 2po 2#0'1

(13b)

we can continue the functions and their vanations analytically into the increment
volume AV,

Fi1G. 2—Perturbed (C,;) and unperturbed (Cpo) poloidal contours of the plasma boundary.
Cpa 1s the contour used in equations (17) and (18).
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For a small displacement da of the plasma surface Sy, the integral over the volume
Vp1 can be written as:

2 2 2
JﬂldV= Jﬁde jhéa-ds, (14)
2po 200 2po

pl Vpi) Sp()

an anologous relation holding for the vacuum integral. With the equations (13) and
(14), equation (12) becomes

_B? B? BZ; B4\ .
oWp = J —LdV+ Jci LdV + J(—"‘-’———"Q)éa-d& (15)
2up 2o 2pe 2pg

ro I'fl.'(l pD

where dS is in the direction of the outward normal to the plasma surface or to the
metal wall.

(c) The total variation Wg — 4/2 6K
We take the variation of equation (3) and transform all variations 6B appearing
in the volume integrals to A by partial integrations. The final result is

SWp —%K - faap'(v x B, — iB)dV + JaAu-v x B,dV

Ve Vo

1 1
+ J’ {Q(sz — JA, B, — B2)a + 6A, x (Bp - QAAP) — GA, x BL}-dS,,

Spo

+ J\(aAr x By)-dSm =0, (16)

Sm

where S,, is the metal surface, and dS,, is in the direction of the inward normal to

the metal surface.

There exists a relation between the variation A and the variation éa of the position
of the plasma boundary. This relation is derived in the following way.

In Fig. 2 the integral along the perturbed contour C,; of the poloidal cross-section
can be written as the integral along the equilibrium contour C,o plus a correction
term due to the distortion of the contour:

J ApdC= [ Ap-dC+ [ Ap-dC, (17)
C

‘pl -pQ - pd

where C,s denotes the dashed contour. According to Stokes’ theorem

| Ap+dC= [ B, dS, - (18)
Cpa Spa
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with the infinitesimal surface element dS = da x dC. Since da is of first order, B,
in equation (18) may be replaced by the equilibrium value B,o. Then, with the use
of Apy = Ayo + 0A,, equation (17) becomes

{_‘j A, -dC — Cj A,o-dC = (_j (A, — 6a x B,o)-dC. (19)

“pl pa po

But from the invariance of the toroidal flux in the plasma it follows that the left-hand
side of equation (19) vanishes. Consequently,

[ (5A,— da x Byy)-dC = 0. (20)

Cpti

Another example of a contour inside of which the magnetic flux is conserved (it being
zero) is a closed curve on the plasma surface that encircles the torus neither the long
way nor the short way. For this contour, again equation (20) holds. The necessary
and sufficient condition for equation (20) to hold for arbitrary contours in the plasma
surface is

0A, = da x B,o. (21)

The vector potential A on the plasma—vacuum boundary is continuous. By choosing

contours that encircle the vacuum region in the perturbed state and in the equilibrium

state respectively, we can show that a relation analogous to equation (21) holds at
the vacuum side of the plasma boundary:

dA, = da x B, (22)

The relations (21) and (22) also follow from the condition (locally valid both on the
equilibrium and perturbed plasma surface):

E+vxB=0

Taking into account that in equilibrium both E and v vanish, we obtain for the
perturbations the relation

JE+dv x B =0,
with 0E = —§,0A and dv = §,da, this leads directly to the equations (21) and (22).
On the metal wall, the variation éA(r,) vanishes. Using this and equations (9), (20)

and (21) in the surface integrals of equation (16), we find that they reduce to zero.
This results in the Euler equations

V x B, = iB,, (23)
and

V x B, = 0. (24)
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Thus, next to the trivial vacuum equation (24), we find again the Euler equation for
the field in the plasma, already derived by WOLTIER (1958).

3. THE ONE-DIMENSIONAL (CYLINDRICAL) SOLUTION

Below we give a listing of all the relevant physical quantities, as they follow from
the Euler equations, boundary conditions and values of the invariants. They are valid
for a torus in the limit of the aspect ratio R/a going to infinity. The resulting cylindrical
equilibrium is assumed to have translational and rotational symmetry. The subscripts
p for poloidal and t for toroidal have been replaced by 3 and z respectively. It has
been shown (REIMAN, 1981) that one may always choose ¥, = 0, so that in the
cylindrical limit A.(r,,) = 0.

We have introduced the dimensionless quantities x = ia and p = a/r,,, where a is
the plasma radius and r,, is the radius of the metal wall.

Bo=Yr X ( x r) (25a)

nrkp? 2J1(x) "\ prm
B,: = nf‘; 5 J‘x( Jo (p%r), (25b)
B nwrmp 2Ji{x)“"(%m")’ i
A= ,:{;:3 Mlm {Jo(p%r) = Jc.(x}}. (25d)
Bus = 2nﬁiigp 11‘ (26a)
B, = fT : j = (26b)
vz = ;’ﬂ‘; li)gTrf. (26d)

In addition to this solution, there are two equations from which x (or 4) and p (the
plasma position) are to be determined. They follow because the number of boundary
conditions and constraints exceeds by two the number of integration constants in
the solutions of the Euler equations.

X Jix) 2Jo(x)
0= p{l i le(x)}’ 2
, log?p fx*( 0 Ji(x)\ p*Q3
%= M s Ja - )

where the following abbreviations have been used:
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_ r_m HOK = ',ypzw::.?

Ql R wﬁz s (29)
0: = i’ (30)

i Fm WUS
0; = 2R, (31)

In the limit of the plasma touching the metal wall, Taylor’s solution is recovered.
In this limit, Q> = @3 = 0 and equation (28) has the solution p = 1, or a = r. Then
x = Ja follows from equation (27).

4. DISCUSSION OF THE CYLINDRICAL SOLUTION

The pair of equations (27) and (28) will in general have a set of roots (x;, p;). In
the Taylor limit p — 1, REIMAN (1981) and TAYLOR (1974) came to the conclusion that
the smallest root x; minimizes the magnetic energy of the plasma. In the presence
of a vacuum layer the situation is more complex, but again the root x; has to be
sought that minimizes the total magnetic energy. For the magnetic energy of a plasma
reaching to the metal wall, REIMAN [1981, equations (5) and (13)] derived the expression
(in units with po = 1)

2Wep = AKo — Ao + Inifp, (32)

where I, is the (poloidal) current through the hole of the torus, being the sum of
the current through the external field coil windings and the induced poloidal current
in the metal wall. For the present case of a plasma with a vacuum layer, equation
(32) must be extended to become

2Wap = AKo — AYn + Yop)Ype + (In + ipp) Yo, (33)

where i,, is the poloidal surface current in the plasma boundary. The magnetic field
in the vacuum can be written as the gradient of a multivalued function ®:

B, = V. (34)

Then the magnetic energy density B2 = V-®B, and the magnetic energy in the vacuum
layer becomes:

Wy, = | B2dV = [ OB, dS. (35)
v, s,

The closed surface S, consists of the surface of the metal wall, the surface of the
plasma—vacuum interface, the poloidal cut in the vacuum S,,. and the toroidal cut
in the vacuum S,,.. Only the cuts will contribute to the integral in equation (35):

Wy = [ [®]B.dS+ [ [@],B,dS. - (36)

S

Yupe Hute
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The toroidal jump in ®, [@],, is calculated by integration of V® along a closed
toroidal contour in the vacuum:

[®] = [ V®-dC = [ B,-dC = [ j-dS = I (37)
o C Sy

The poloidal jump [®,] is calculated likewise by integration of V® along any closed
poloidal contour around the plasma column.

[®],= | V®&-dC= | B, dC= [ jodS = Ip+in=1I,, (38)
Cis G,n Syp
where i, is the poloidal surface current on the plasma. Substituting the jumps in
equation (36) we find

2W}]p = I}lwm + Ir"bup- (39)

The total magnetic energy Wp is found by combination of equations (33) and (39).

2WB = JJ-KO = A{‘f’h + ‘&up)'ﬁpr W “h + ipp)‘!’m + Ikl!’w + Ir'f’vp- (40)

In view of I, = Ay, and by introducing ¥/, = W, + W, we can write equation (40)
as

2Wﬂ = AK() - )ll{lhl,{l_m + Ih',{’r + ipp',!fp! + ipr\f’vp- (41)

In the absence of surface currents it can be seen that the lowest A corresponds to
the lowest value of the magnetic energy. In the complicated case with surface currents
this is no longer true.

5. DISCUSSION
From solutions (25) and (26) the familiar F-3-diagram can be constructed. In the
presence of a vacuum layer the relevant definitions are:

B.(rm Ba(r - ;
=Am) and 3 = or }, where B, = i‘— is now the average

f“ —
Bz Bz 7!!"5'

over the total cross-section. When there are no surface currents, we find

9 29a/rm / i
h= 7"’”[1 —F{1- (a;r,..)z}]f Jl[' — F{1 —(a/ra)’} ] (42}

For a = r,, equation (42) reduces to Taylor’s result: F(3, rm) = 3J0(2/71(29)9), with
F=0at 3= 1.202

Furthermore, we see from equation (42) that field reversal takes place for 3a/r, > 1.2.
Consequently, a vacuum layer will effect a rightward shift of the F — 3-curve. This
is shown in Fig. 3, where F — 3-curves have been drawn for several values of a/rn.
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F1G. 3.—F-8-diagram for various positions of the plasma-vacuum boundary.

The data symbols in this plot referring to different filling pressures were taken from
EDENSTRASSER and SCHUURMAN (1984). The conclusion is qualitatively that besides
a finite f the presence of a vacuum layer can be used to explain the experimental
points to the right of the Taylor curve (dashed in Fig. 3).
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