A 2/3-inch Low Noise HDTV FT CCD-Imager for 1080i180, 1080p90 and 720p120 Scanning at Constant Image Diagonal

Peter Centen¹, Holger Stoldt², Jan Visser^{2,3}, Jan T. Bosiers²

- 1) Peter.centen@grassvalley.com, Breda, the Netherlands
- 2) DALSA Professional Imaging, Eindhoven, the Netherlands
- 3) NIKHEF, Amsterdam, the Netherlands

Acknowledgement

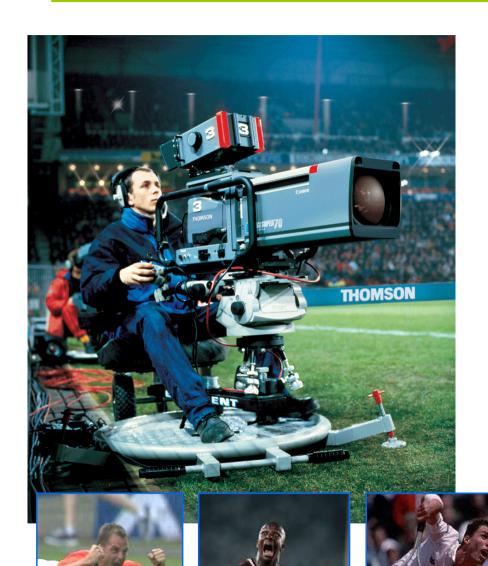
- DALSA Professional Imaging Eindhoven: Cees Draijer, Agnes Kleinmann, Jan Nooijen, Rene Leenen and Patrick van Gestel.
- Thomson Grass Valley Breda: Gerard van Beijsterveld, Paul Konings and Ruud van Ree.
- The sensor was developed as part of a MEDEA+ project (2A206) lead by Albert Theuwissen.

Agenda

Introduction

4320 an important number

- Constant Image Diagonal
- Scanning formats


Local oxide thinning

- Capacitance
- Increase bandwidth
- Reduce noise

Introduction: My World

Super slow motion: 3x

Introduction

The HDTV standard.....

- 18 possible scanning formats
- Main 1080p, 1080i and 720p...counted vertically
 - P:progressive; i:interlaced
- The problem: to have ONE camera that supports 1080p, 1080i,
 720p same horizontal angle of view.
- In High end **2/3"**, Pro-AV ½" and 1/3"
 - Lens determined

1080p30 and 1080i60 and 720p60

74 MHz masterclock and 30 MHz video bandwidth

Triple speed

- 3x, sports applications (Olympics, soccer)
- 1080p90 and 1080i180 and 720p180
- 222 MHz masterclock and 90 MHz video bandwidth

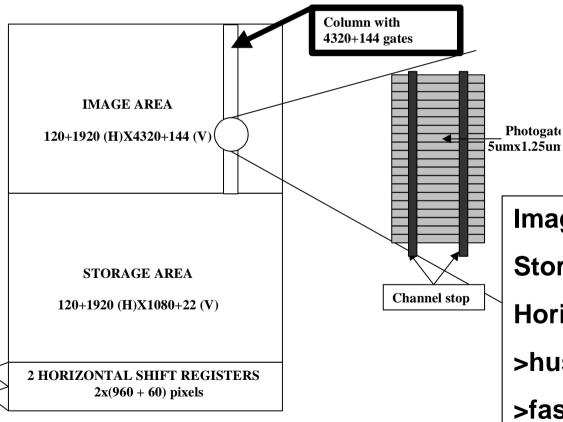
The importance of

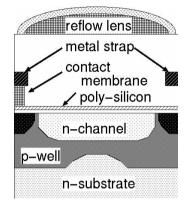
4320

pixels per column

Mathematics to arrive at the sweet spot

Scanning Format	Prime decomposition	Log-prime notation
1080P	$2^3.3^3.5$	[3,3,1,0,0,0]LP6
1080I	$2^2.3^3.5$	[2,3,1,0,0,0]LP6
720P	$2^4.3^2.5$	[4,2,1,0,0,0]LP6
480P	$2^5.3.5$	[5,1,1,0,0,0]LP6
480I	2 ⁴ .3.5	[4,1,1,0,0,0]LP6


Least Common Multiple : $2^5 \cdot 3^3 \cdot 5 = 4320$


Constant Image Diagonal 1/3

=>SAME ANGLE OF VIEW for all scanning formats

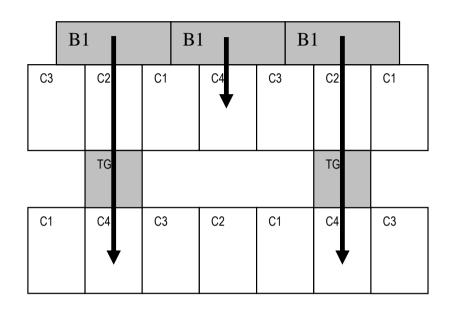
=>1920 (H) x 4320 (V) and 16:9 aspect ratio

2/3" => 5 um x 1.25 um per photogate

Pixel cross-section

Imager area: 12-phase (9MHz)

Storage area: 4-phase (9MHz)


Horizontal register: 4-phase

>hustle 4 independent voltages

>fast quasi 2-phase transport

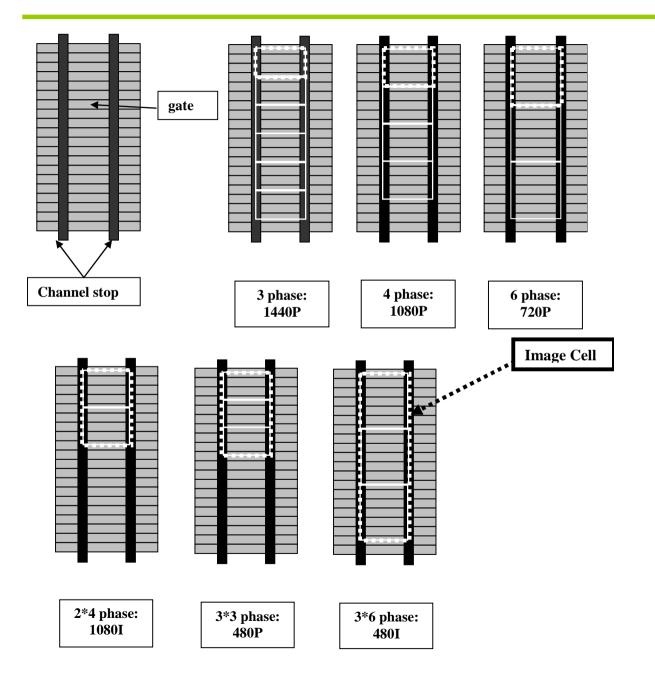
(2x111MHz)

Close up storage horizontal register

TOP-Register

BOTTOM-Register

pixels perfect aligned in time

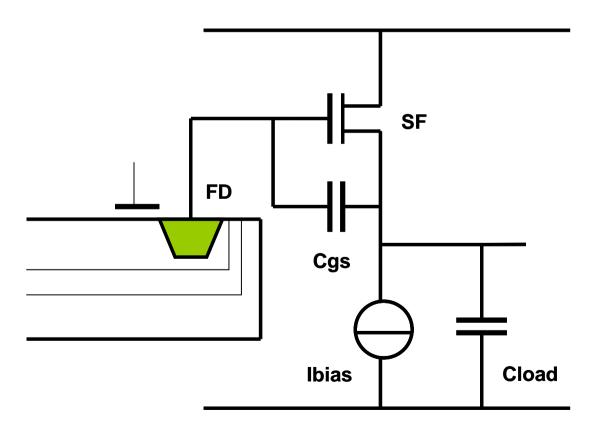

Constant Image Diagonal 2/3

What it is designed to do versus what it can do

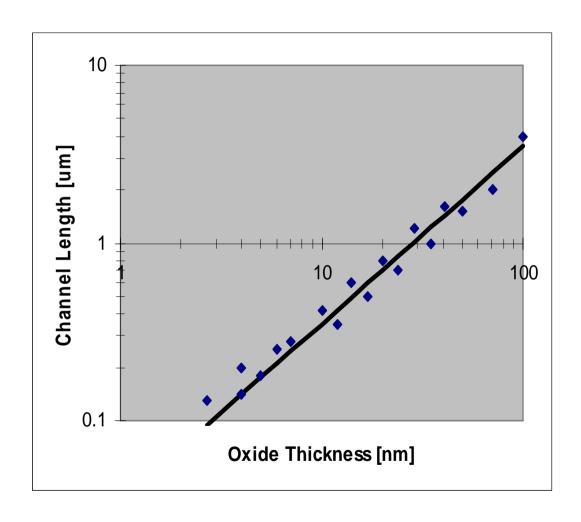
16:9 scanning formats	#GATES/Pixel	In 12-phase clocking schema
1080p	4 (= 4320 / 1080)	4-phase clocking 1 pixel
720p	6 (= 4320 / 720)	6-phase clocking 1 pixel
1080i	8 (= 4320 / (1080/2))	4-phase clocking 2 sub-pixels
480p	9 (= 4320 / 480)	3-phase clocking 3 sub-pixels
576i	15 (= 4320 / (576/2))	3-phase clocking 5 sub-pixels
480i	18 (= 4320 / (480/2))	6-phase clocking 3 sub-pixels
1080p in 2.37:1 aspect ratio	3 (= 4320*(3/4) / 1080)	3-phase clocking 1 pixel

=>2.37:1 is used for cinemascope

Constant Image Diagonal 3/3



2/3" => HxV 5 um x 1.25 um per photogate


Noise and bandwidth

High bandwidth low noise

- Using local oxide thinning for the MOST to optimize noise and bandwidth performance
 - "Pixel" oxide thickness determines CCD performance decouple it!

Channel Length and Oxide Thickness

Minimum channel length

$$L_{\min} \approx 35 * d_{ox}$$

Based on Wong's data (IEEE ED 1996)

(equal units)

MOST Gate capacitance scaling

$$C_g = W * L * C_{ox} = W * L * \frac{\mathcal{E}}{d_{ox}}$$

Based on Wong's data (equal units)

$$L_{\min} \approx 35 * d_{ox}$$

The gate capacitance only proportional to W

$$C_g \approx W$$

Bandwidth

 Given a load capacitance and MOST transconductance the 3dB frequency is

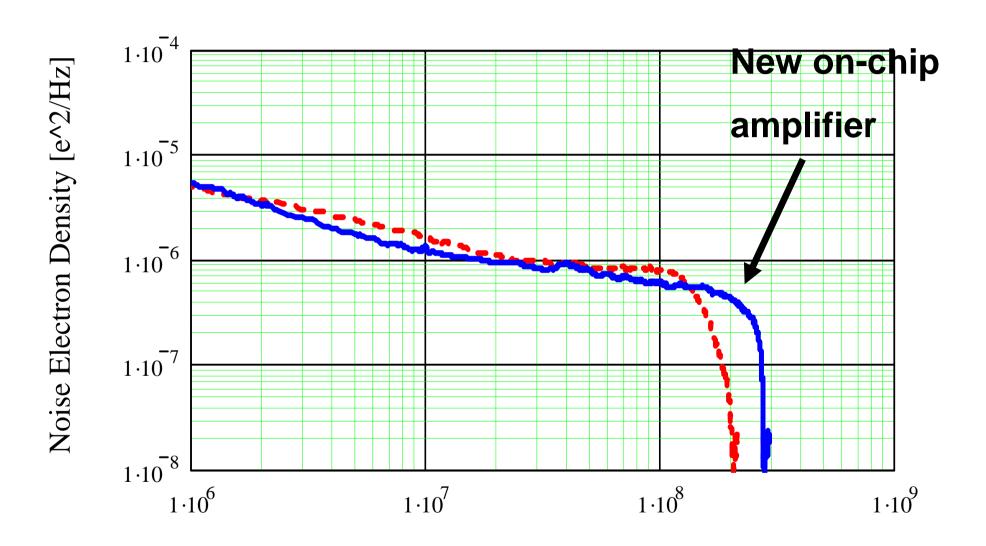
$$F_{3dB} = \frac{g_m}{2 * \pi * C_{1...1}}$$

$$I_{ds} = W * J_x$$

$$g_m = \sqrt{2 * \frac{W}{L} * \frac{\varepsilon}{d_{ox}}} * u_n * I_{ds} \approx \frac{W}{d_{ox}} \approx \frac{1}{d_{ox}}$$

Halving the oxide thickness and channel length doubles the bandwidth.

While having same input capacitance Cgimportant for 3-stage amp


Noise

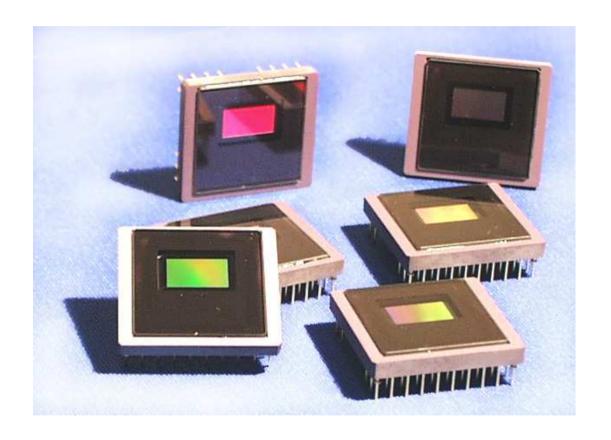
$$NED = \frac{4kT}{g_m} * \left(\frac{C_{tot}}{q}\right)^2$$

- Optimal gate capacitance approx. the MOST dimensions independent capacitance, and thus a given
- Minimizing the noise electron density...only gm left.
- But W is fixed.....capacitance determined

$$g_m = \sqrt{2*\frac{W}{L}*\frac{\varepsilon}{d_{ox}}} *u_n *I_{ds} \approx \frac{W}{d_{ox}} \approx \frac{1}{d_{ox}}$$

Noise Spectrum.....a first result

Frequency [Hz]


Benchmarking

Type	Ref	Reset Frequency	Ampl. Type	Conversion gain	Noise after CDS/ √Resetfrequency
FF-CCD	ED1997 Burke	100 kHz	Source Follower	20 μV/e	6.3 e/√MHz
CMOS	AIS2003 Krymski	50 kHz	Source Follower +Gain	60 μV/e	6.3 e/√MHz
FF-CCD	AIS2005 Draijer	25 MHz	Source Follower	40 μV/e	2.8 e/√MHz
CMOS	ISSCC2005 Kozlowski	104 kHz	Source Follower +Gain	?μV/e	46 e/√MHz
CMOS	ISSCC2006 Yoshihara	156 kHz	Source Follower +Gain	40 μV/e	17.7 e/√MHz
CMOS	ISSCC2007 Takahashi	156 kHz	Source Follower +Gain	75 μV/e	11.6 e/√MHz
CMOS	ISSCC2007 Cho	625 kHz	Source Follower +Gain	101 μV/e	10.4 e/√MHz
FT-CCD	This paper	111MHz	Source Follower	18 μV/e	1.3 e/√MHz

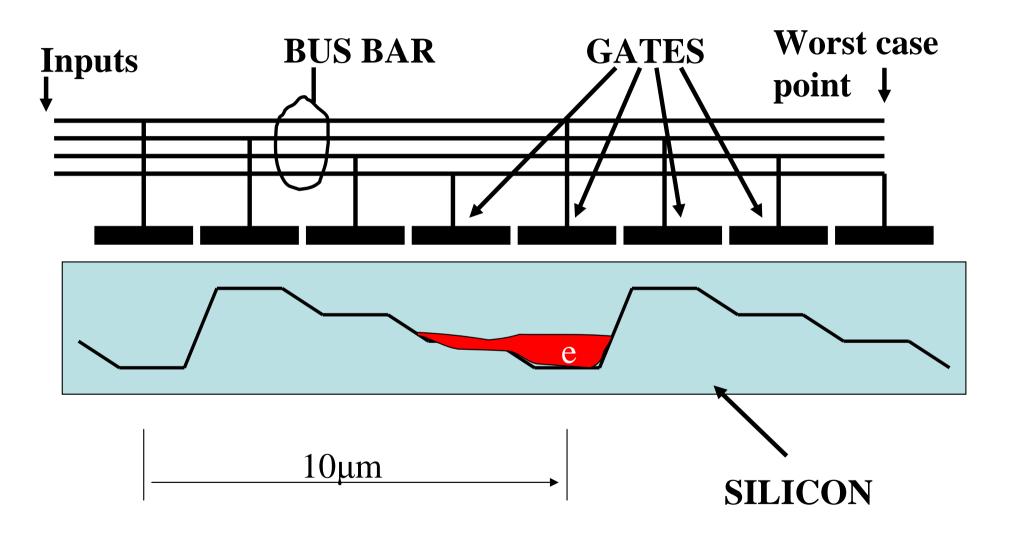
Table

Technology	Tungsten, thin transparent membrane Frame Transfer CCD	Number of horizontal registers	2
Chip Size	12.0(H) x 12.7(V) mm ²	Number of horizontal clock phases	4
		During fast horizontal transport	Quasi 2-phase
			operation
Aspect Ratio	16:9	Number of on-chip amplifiers	2
Storage number of clock	4	Measured bandwidth of on-chip	>241MHz
phases		amplifier	
Storage number of	2040(H) x 1102(V)	Conversion gain	18 μV /e
columns x lines			
Image number of clock	12	Max frame rate, pixel rate	180 fld/sec,
phases			223Mpixel/sec
Image number of	2040(H) x 4464(V)	Horizontal transport frequency	2x112MHz
columnsxgates			
Pixel size in	5.0 μm x 5.0 μm (HxV)	Vertical transport frequency	10MHz
1920x1080p90			
Pixel size in	5.0 μm x 5.0 μm x 2 (HxV)	Noise Electron Density (NED) of	0.75
1920x1080i180		the on-chip amplifier	e ² /MHz@37.125MHz
			$0.59 e^2/MHz@112MHz$
Pixel size in	5.0 μm x 7.5 μm (HxV)	Temporal Noise After CDS in	$8e \text{ or } 2.1 \text{ e}^2/\text{MHz}$
1920x720p120		30MHz	
Pixel size in	5.0 μm x 3.75 μm (HxV)	Sensitivity in Green	820
1920x1080p90 @ 2.37:1			electrons/lux/sec/µm ²
_		Qmax	680 electrons/μm ²

HD-DPM Imager

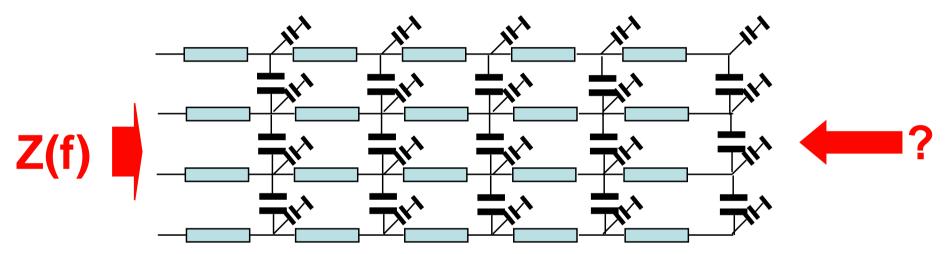
Conclusion

- A 2/3" multi-format HDTV imager was developed
 - With equal angle of view in 1080p, 1080i and 720p
 - Running at 1920x1080i180
 - 180 fields/second
 - Horizontal transport at 2x111MHz
 - Vertical transport at 9.25MHz
- Low noise (0.59 e²/MHz@111MHz) and high bandwidth (>240MHz) can be reached simultaneously when use is made of local oxide thinning as an additional optimization parameter for MOS transistors in the onchip amplifier
- The triple speed HDTV camera, applying this imager, was used during the 2008 Olympics in Beijing and the 2008 European soccer games

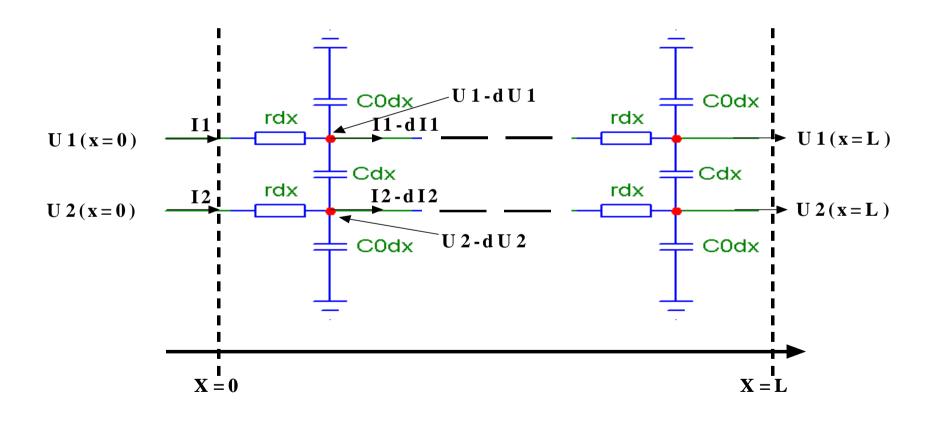

Q&A

Bonus material

An analytical approach


for the imager internal clock distribution

CCD charge transport


The general question

 Use the fact that a lumped model with over 4000 discrete elements can be approximated very well with a few coupled partial differential equation

 Solving them resulted in a closed form equation with the series resistance, parallel capacitance per unit length, cross capacitance and length of transportregister as a parameter.

Quasi 2-phase

The equations

$$Z(f) := \frac{2 \cdot r}{\lambda(f) \cdot tanh \left(\lambda(f) \cdot L\right) + \mu(f) \cdot tanh \left(\mu(f) \cdot L\right)}$$

$$H(f) := \frac{U(L\,,f)}{U(0\,,f)}$$

Predictable

$$\mathbf{H}(\mathbf{f}) := e^{-\lambda(\mathbf{f}) \cdot \mathbf{L}} \cdot (1 + \tanh(\lambda(\mathbf{f}) \cdot \mathbf{L}))$$

SOLUTION

$$\frac{\mathrm{d}}{\mathrm{d} v} \mathrm{U}(\mathrm{L}, t) := 0 \qquad \mathrm{U}(0, t) := \mathrm{V}$$

$$U(0,t) := V$$

BOUNDARY CONDITIONS

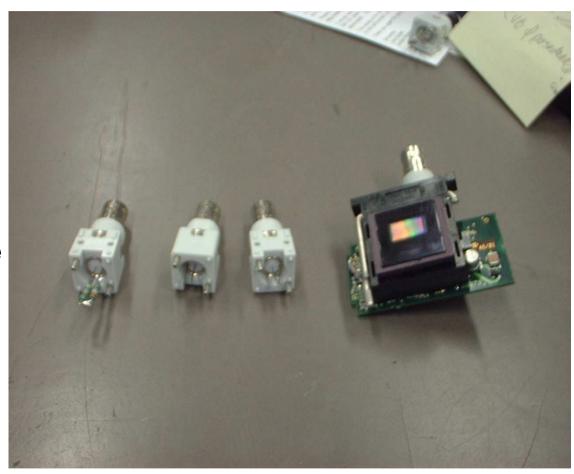
$$\frac{d}{dx}\frac{d}{dx}I(x\,,t)\,:=(C0+2\cdot C)\cdot r\cdot \frac{d}{dt}I(x\,,t)$$

$$\lambda(\mathbf{f}) := \sqrt{1 \mathbf{j} \cdot 2 \cdot \pi \cdot \mathbf{f} \cdot \mathbf{r} \cdot (\mathbf{C} \mathbf{0} + 2 \cdot \mathbf{C})}$$

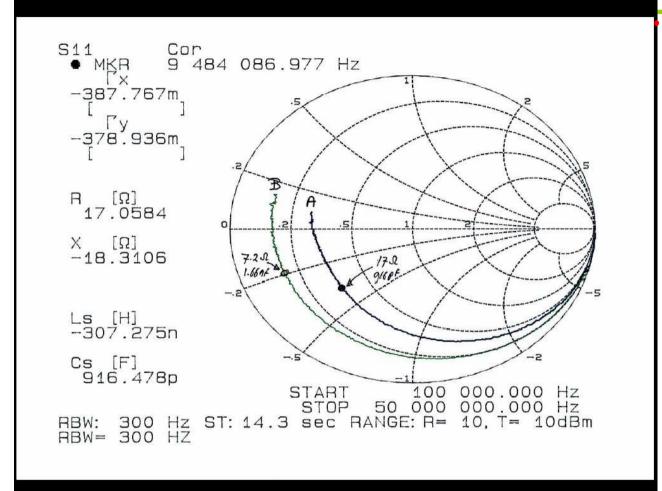
$$\mu(\mathbf{f}) := \sqrt{1 \mathbf{j} \cdot 2 \cdot \pi \cdot \mathbf{f} \cdot \mathbf{r} \cdot \mathbf{C} \mathbf{0}}$$

PARAMETERS

$$\frac{d}{dx}\frac{d}{dx}U(x,t) := (C0 + 2 \cdot C) \cdot r \cdot \frac{d}{dt}U(x,t)$$

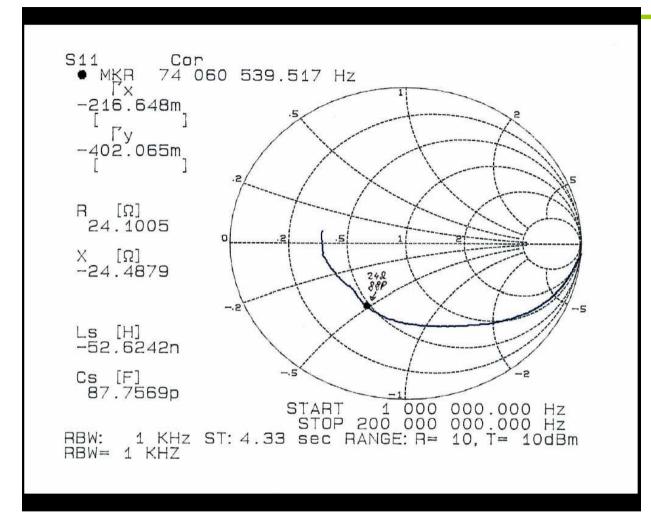

IFFERENTIATION and SUBSTITUTION

$$\frac{d}{dx}I(x,t):=(C0+2\cdot C)\cdot \frac{d}{dt}U(x,t)$$


$$\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}\mathbf{U}(\mathbf{x},\mathbf{t}) := \mathbf{r} \cdot \mathbf{I}(\mathbf{x},\mathbf{t})$$

The measurement

- Calibration of the networkanalyser reflectometer setup
 - 3 kind of terminators needed
 - Open
 - Short
 - Characteristic impedance
- Measure the parameters on the PCB with imager


Smith-chart of vertical phases

Input impedance of the Image and Storage clock lines

- Horizontal axis is the real part of the impedance the vertical axis the imaginary part.
- The impedance crosses the real axis at some point showing that there is also some self-inductance in the circuit.
- Marker at 9.48MHz and is close to the 2-speed VTR.
- The series R and C at that frequency are:
 - 17 Ohm and 916 pF for the image clock and
 - 7.2 Ohm and 1.66nF for the storage clock.

Smith-chart of horizontal phases

Impedance of the horizontal clock lines

- Driven in quasi 2-phase.
- The frequency sweeps from 1 MHz to 200 MHz.
- At 74 MHz, near the driving frequency of 2speed mode, the equivalent series resistance is 24 Ohm and capacitance is 88 pF.